
Resource Management and 
Containment for Active Services

M. Ranganathan, Doug Montgomery,  Kevin Mills
Advanced Networking Technologies Division
National Inst. Of Standards and Technology

Gaithersburg, MD
mranga@nist.gov



Observations
• Programmable Networks Trends:

– Not  in the data plane for IP.
– More promising in the control plane.

• Custom call processing for internet telephony is a 
promising area:
– People really want it.
– Service platforms and soft switches are shipping.
– There is a lot of activity in standards groups (IETF, 

JAVA community).
– Same resource problems as traditional Active Nets

• Security, Accounting and Resource Control



Project Goals
• Create a user-programmable service platform for extended 

SIP-enabled IP Telephony Services.  
• Can lessons learned from Active Networks be applied to 

programmable SIP call processing environments to enable 
user programmability?
– Analogous to Active Networks in several ways.
– Programmable SIP Call processing enable user injection of service 

code.
• Key Issues:

– Security
– Load and resource control 

• Starting Point: 
– DARPA funded NIST Active Nets project (Virgine Galtier, Kevin 

Mills et al.),  Active Services work.



SIP and SIP services

• SIP is a HTTP-like signaling protocol for IP 
telephony and conferencing.

• A SIP service is an event triggered piece of code 
that runs on a SIP server. 

• Event is generated by arrival of a message at a 
server or change in server state.

• Event can be:
– low-level at the level of individual messages.
– or semantic (at the level of a call).



SIP Network Components

1

2
3

4

5
6

7

10
8

9

SIP Proxy
Proxies SIP Invites
Host Services
Handle Registration

Redirect Server
Redirects Invites

Redirect Server

SIP Proxy

SIP Proxy

User Agent  Server
Field the Invite

12

11

User Agent Client
Send out an invitation



• ••

Event / Service
Manager
Interface

Soft Switch Hardware

OS Resource
Management

Services

OS Resource
Management

Services

Network Protocols

Network Device Drivers

Network Protocols

• ••• ••

CPL

Soft Switch 
Operating System 

Layer

Service Containers

CGI

Service
Module

Call Processing
Script

Call Processing
Script Call Processing

Script

ServletsService
Module

Service
Module

Service
Module

Service
Module

Service
Module

Event / Service Management
JAIN Event APIs JAIN Service APIs

Session Initiation Protocol (SIP)

• ••

Event / Service
Manager
Interface

Soft Switch Hardware

OS Resource
Management

Services

OS Resource
Management

Services

Network Protocols

Network Device Drivers

Network Protocols

• ••• ••

CPL

Soft Switch 
Operating System 

Layer

Service Containers

CGI

Service
Module
Service
Module

Call Processing
Script

Call Processing
Script Call Processing

Script

ServletsService
Module
Service
Module

Service
Module
Service
Module

Service
Module
Service
Module

Service
Module
Service
Module

Service
Module
Service
Module

Event / Service Management
JAIN Event APIs JAIN Service APIs

Session Initiation Protocol (SIP)

Service Architecture



SIP Services  (Service Creation)
• Examples of simple programmable services:

– Call forwarding based on time of day / caller location.
– Call redirection based on caller.

• Much industry activity:
– SIP CGI / SIP CPL / SIP Servlets
– JAIN-SIP/JAIN-SIP-LITE/JAIN SCE/SCML
– Current schemes constrain programmability for user 

uploaded services (e.g.. CPL).
• Our Goal:

– Fully general User Programmable SIP Services.
– Domains of applicability: SIP Servlets, Upload able test 

scripts for SIP test tool.



Driving Application: 
NIST-SIP Test System 

Proxy Responder

UAS

NIST SIP

Responder UAC
Test service

Responder UAS

Customizable State Machine Template forCustomizable State Machine Template for
Load GenerationLoad Generation



Requirements for Up-Loadable Test 
Scripts

• Security: Need to protect the test server 
from unauthorized access to resources.

• Resource containment: Need to protect the 
server from denial of service attacks.



Restricting access to resources

• Use existing solutions:
– Restrict class loading.
– Access to all sensitive resources (such as files 

and network) will be via resource monitors.
– Use Security policies to define capabilities for 

resource access.
• Security Manager to restrict resource access.
• Only wrapped classes are available to service 

scripts.



Controlling Resource Usage of a 
Running Script

• Two problems:
– Admission control: Service platform should 

have an interface to query the incoming service 
script for what resources it needs.

– Run-time control: Service platform should be 
able to abort execution for misbehaving service 
scripts.



Generating the Resource 
Signature

• Resource Signature 
– A function that represents a service that can be used to determine 

whether or not a service will run.
– An incoming service script declares what resources it will need by 

its resource signature.
• Signature can be used by container for admission control 

and load control. 
• Signature can be generated manually by user or generated 

with a signature generation tool.
• Signature generation tool will:

– Generate a function that can be called by the container to query for 
required resources.



Structure of a Resource Signature

• Follow the approach developed in the previous 
work at NIST (Galtier, Mills et al. )
– Application is represented by a finite state model with 

probabilistic transitions between states.
– Previous project only considered CPU resources. We 

will extend this to include message traffic and other 
relevant resources.

– Admission control of scripts is done by examining 
current system load and expected runtime load of the 
incoming script.

– A malicious script can lie about its resource signature 
so we need runtime enforcement



Controlling Resource Usage of a 
Running Script

• Use byte code rewriting technique:
– Determine basic blocks.
– Call back to resource checking hooks at the end of each 

basic block to see if allowance has been exhausted.
– Exit the service script if allowance has been exhausted.

• Portable metrics such as byte code allowances will be used for 
CPU time representation.

• Message count and size will be used for network.
• Coarse grained metrics such as object allocation rate and size 

will be used for memory.



Statistically Compare 
Simulation Results 
against Measured 
Data

Simulate 
Model with 
Monte Carlo 
Experiment

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50  bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50  bins-20000 reps100 bins-20000 reps

Statistically Compare 
Simulation Results 
against Measured 
Data

Simulate 
Model with 
Monte Carlo 
Experiment

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50  bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50  bins-20000 reps100 bins-20000 reps

Trace is a series of system calls and 
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Generate 
Execution Trace

Monitor at
System Calls 

in Active Node OS

…
begin, user (4 cc), read (20 cc), user (18 cc), 
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc), 
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc), 
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc), 
kill (20 cc), user (8 cc), end
…

Trace is a series of system calls and 
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Generate 
Execution Trace

Monitor at
System Calls 

in Active Node OS

Trace is a series of system calls and 
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...read write kill...
ANodeOS interface

OS layer
Physical layer

Generate 
Execution Trace

Monitor at
System Calls 

in Active Node OS

…
begin, user (4 cc), read (20 cc), user (18 cc), 
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc), 
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc), 
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc), 
kill (20 cc), user (8 cc), end
…

NIST Prior Work:  Galtier, Mills et.al

Scenario A: 
sequence = “read-write”, 
probability = 2/5

Scenario B: 
sequence = “read-kill”, 
probability = 3/5

Distributions of CPU time in system calls 
:

Generate
Active Application Model

Distributions of CPU time between system calls :

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

Scenario A: 
sequence = “read-write”, 
probability = 2/5

Scenario B: 
sequence = “read-kill”, 
probability = 3/5

Distributions of CPU time in system calls 
:

Generate
Active Application Model

Distributions of CPU time between system calls :

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

Scaling AA Models
AA model on node X:
read  30 cc
user  10 cc
write 20 cc

Model of node X:
read  40 cc
write 18 cc
user  13 cc

Model of node Y:
read  20 cc
write 45 cc
user   9 ccscale

AA model on node Y:
read  30*20/40 = 15 cc
user  10*9/13  =  7 cc
write 20*45/18 = 50 cc

Scaling AA Models
AA model on node X:
read  30 cc
user  10 cc
write 20 cc

Model of node X:
read  40 cc
write 18 cc
user  13 cc

Model of node Y:
read  20 cc
write 45 cc
user   9 ccscale

AA model on node Y:
read  30*20/40 = 15 cc
user  10*9/13  =  7 cc
write 20*45/18 = 50 cc

AA model on node X:
read  30 cc
user  10 cc
write 20 cc

Model of node X:
read  40 cc
write 18 cc
user  13 cc

Model of node Y:
read  20 cc
write 45 cc
user   9 ccscale

AA model on node Y:
read  30*20/40 = 15 cc
user  10*9/13  =  7 cc
write 20*45/18 = 50 cc



Related Work

JKernel: Uses byte code rewriting for safety. Allows users to upload 
HTTP servlets. http://www.cs.cornell.edu/slk/

JSeal2: Mobile agent system that uses byte code rewriting for runtime 
resource enforcement: http://www.jseal2.com/

KaffeOS: Process isolation and resource containment in 
JAVA. http://www.cs.utah.edu/flux

DARWIN : Resource management for Application Aware 
networks 

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/cmcl/www/darwin/



Deployment
• Developed technology will be deployed in our web test 

system and made available on the ABONE for 
experimentation.

• Resource monitoring and enforcement framework for SIP 
Servlets will be proposed to the JAVA community for 
comment and possibly incorporated into the servlet spec.

• Developed code will be distributed as part of the NIST-SIP 
package.
– Already a popular package for prototyping and development 

(1000s of downloads).
– Implements JAIN SIP and will incorporate Servlets.
– Test tool already developed.



Schedules

• Jan 2002:
– Exploration and evolution of the design.

• August 2002:
– SIP Servlet implementation and development of 

resource monitor technology.
– Release SIP Servlets as part of NIST-SIP 1.2

• December 2002:
– Integration of resource monitor with the servlet engine.
– Release SIP Servlets with resource control as part of 

NIST-SIP 1.3



Schedules

• August 2003
– Integration into our test system
– Gather more feedback and debug

• December 2003
– Project completion and deployment on the 

ABONE.


